Vitamin D₁

Edwin S. Tan,† Fook S. Tham,‡ and William H. Okamura*

Department of Chemistry, University of California, Riverside, CA 92521 USA. E-mail: william.okamura@ucr.edu

Received (in Corvallis, OR, USA) 1st September 2000, Accepted 13th October 2000 First published as an Advance Article on the web 10th November 2000

The X-ray crystallographic structure of vitamin D_1 reveals a sandwich-like 1:1 heterodimeric complex of lumisterol₂ and vitamin D_2 with the latter in its α -chair conformer.

Vitamin D₁, the very first anti-rachitic factor, which played a historical role in the development of the vitamin D field, was discovered by Windaus¹ with contributions from Askew and coworkers² and Reerink and Van Wijk³ in 1931. This sharp melting, biologically active substance, produced photochemically from ergosterol (provitamin D₂, 3a), was soon thereafter discovered to be a 1:1 crystalline heterodimer of lumisterol₂ (4a) and vitamin D₂ (1a).¹ This was all at a time when the involvement of previtamin D₂ (2), pyrocalciferol (5) and isopyrocalciferol (6) in the now well accepted scheme (Fig. 1) was not yet recognized.⁴ Early unsuccessful attempts to obtain the X-ray structure of crystalline, monoclinic D₂ were reported by Bernal in 1932⁵ and by Bernal and Crowfoot in 1935,⁶ but interestingly, the successful completion of the structure was not completed until 1994!¹ The X-ray structure of the monoclinic

Provitamin D_n

A

A

Lumisterol_n

Previtamin D_n

A

A

A

Previtamin D_n

A

B

B

B

Comparison

A

Comparison

A

Comparison

Com

Fig. 1

DOI: 10.1039/b007191i

isomorph revealed that the D_2 was essentially the same as that in the very interesting finding in 1976^8 by Hull $\it et~al.$ that the crystalline orthorhombic form of pure 1a (a feature also characteristic of 1b, vitamin $D_3{}^9$) exists as a pseudo-homodimer. What is novel about 1a (and also 1b) is that it crystallizes as a 1:1 complex of $\alpha{\text -}$ and $\beta{\text -}$ A-ring chairs (Fig. 2), the former with an equatorial disposition of the C-3 hydroxy and the latter with an axial orientation of the same hydroxy. Not surprising is that in solution vitamin D_2 exists as a dynamically equilibrating mixture of the same $\alpha{\text -}$ and $\beta{\text -}$ chairs and that this ratio is solvent dependent. 10

HO 7 HO HO HO A-ring
$$7$$
, α -chair 7 , β -chair 7 , β -chair 7 , β -chair 1

In light of these divergent solid state and solution structural results for 1a, it became of interest to consider the structure of the crystalline heterodimeric D₁, a complex of two seemingly very structurally dissimilar molecules 4a and 1a. The former possesses the steroid skeleton, but the latter exists in an extended 6-s-trans conformation. It was intriguing to entertain the possibility that D₁ might in fact be a complex of lumisterol₂ and previtamin D2, a substance related to vitamin D2 by way of a facile thermal [1,7]-sigmatropic shift. Alternatively, it was considered possible that the D2 might exist in its 6-s-cis conformation (not shown), thus rendering it, like the putative previtamin D₂, better able to co-crystallize with the more topologically similar lumisterol₂ molecule. The purpose of this communication is to report that in fact the single crystal X-ray structure\(\) reveals that vitamin \(D_1 \) is simply a 1:1 complex containing lumisterol₂ and vitamin D₂ in its 6-s-trans conformation, but with the A-ring in the α -chair conformation as indicated in Fig. 3. It is interesting that the axial 3β-OH of lumisterol₂ is hydrogen bonded to the equatorial 3β-OH of vitamin D₂ in such a manner as to form a face to face sandwichlike structure placing the two C_{18} angular methyl group carbons in close proximity with one another.

Samples of vitamin D_1 were prepared by collecting crystals (mp, 119–121 °C; literature² mp 124–125 °C) from a slowly evaporating solution containing a 1:1 mixture of lumisterol₂ and vitamin D_2 (acetone). Similar attempts to obtain crystalline

$$\alpha$$
-Chair α -chair of D_2 eq_{HO} α -chair of D_2 Lumisterol₂

Chem. Commun., 2000, 2345-2346

material from a 1:1 mixture of previtamin D_2 (2a) and vitamin D_2 , lumisterol₃ (4b) and vitamin D_3 (1b), or previtamin D_3 (2b) and vitamin D_3 failed. Lumisterol₂ and previtamin D_2 were prepared by photochemical irradiation of 3a (Hanovia 450 W medium pressure mercury lamp, pyrex vessel, EtOH) followed by HPLC purification (20% EtOAc–hexanes, silica column). Previtamin D_2 could also prepared by thermal equilibration with vitamin D_2 followed by HPLC separation. 11 Lumisterol₃ and previtamin D_3 were prepared in a similar way from 7-dehydrocholesterol or from vitamin D_3 as appropriate. The X-ray structures of pure lumisterol₂ and lumisterol₃ have been previously reported D_1 as have vitamin D_2 and D_3 . D_3 Thus, the vitamin D_1 result reported herein represents a unique combination of these earlier crystallographic results.

This study was generously supported by grants from the NIH, NSF, and the Committee on Research of the University of California, Riverside. We also acknowledge generous supplies of starting materials from Solvay Pharmaceuticals (Weesp, the Netherlands).

Notes and references

- † Undergraduate Honors Thesis Program Participant, University of California, Riverside.
- ‡ Analytical Chemistry Instrumentation Facility located in the Department of Chemistry, College of Natural and Agricultural Sciences, University of California, Riverside.
- § Crystal data: $C_{56}H_{88}O_2$, M=793.26, monoclinic, a=20.1072(13), b=7.2481(5), c=35.858(3) Å, $\beta=94.091(2)^\circ$, V=5212.6(6), T=213(2) K, space group C2, Z=4, μ (Mo-Kα) = 0.059 mm⁻¹, 16502 reflections measured, 9692 unique ($R_{int}=0.0262$) which were in all calculations. The final R indices [$I>2\sigma(I)$] were R1=0.0497, wR2=0.1147; R indices (all data) were R1=0.0725, wR2=0.1249. There was one lumisterol₂ and one vitamin D_2 molecule present in the asymmetry unit. The side chain attached to $C_{23'}$ of vitamin D_2 and C_{23} of lumisterol₂ were refined as individual disordered-side chains (the site occupancy ratio for disordered-side chains was 56:44% and 52:48% for vitamin D_2 and lumisterol₂, respectively). The DELU, SIMU, and DFIX restrains (SHELXTL software) were used to

model the disorder, where the C–C and C=C–C single bond distances were restrained to 1.53 and 1.51 Å, respectively. Full details have been deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK CB2 1EZ (CCDC 182/1825).

- A. Windaus, A. Luttringhaus and M. Deppe, Liebigs Ann. Chem., 1931, 489, 252. See also: A. Windaus, Proc. R. Soc. London, Ser. B, 1931, 108, 568; A. Windaus, O. Linsert, A. Luttringhaus and G. Weidlich, Liebigs Ann. Chem., 1932, 492, 226.
- F. A. Askew, H. M. Bruce, R. K. Callow, J. St. L. Philpot and T. A. Webster, *Nature*, 1931, 128, 758. See also: T. C. Angus, F. A. Askew, R. B. Bourdillon, H. M. Bruce, R. K. Callow, C. F. Fischmann, J. St. L. Philpot and T. A. Webster, *Proc. R. Soc. London, Ser. B*, 1931, 108, 340; F. A. Askew, R. B. Bourdillon, H. M. Bruce, R. K. Callow, J. St. L. Philpot and T. A. Webster. *Proc. Royal Soc. B*, 1932, 109, 488.
- 3 E. H. Reerink and A. Van Wijk, Biochem. J., 1931, 25, 1001.
- 4 P. Karlson, Trends Biochem. Sci., 1981, 29.
- 5 J. D. Bernal, *Nature*, 1932, **129**, 277.
- 6 J. D. Bernal and D. Crowfoot, Chem. Ind., 1935, 54, 701.
- 7 I. Leban, R. A. G. De Graaf, R. De Gelder, J. Turkenburg, K. S. Wilson and Z. Dauter, *The Collected Works of Dorothy Crowfoot Hodgkin: Volume-III, General Crystallography and Essays*, eds. G. G. Dodson, J. P. Glusker, S. Ramaseshan and K. Venkateran, Interline Pub., Bangalore, India, 1994, pp. 43–51.
- 8 S. E. Hull, I. Leban, P. Main, P. S. White and M. M. Woolfson, *Acta Cryst. B*, 1976, 32, 2374.
- 9 Trinh-Toan, H. F. DeLuca and L. F. Dahl, J. Org. Chem., 1976, 41, 3476.
- R. M. Wing, W. H. Okamura, M. R. Pirio, S. M. Sine and A. W. Norman, *Science*, 1974, **186**, 939; R. M. Wing, W. H. Okamura, A. Rego, M. R. Pirio and A. W. Norman, *J. Am. Chem. Soc.*, 1975, **97**, 4980; G. N. LaMar and D. L. Budd, *J. Am. Chem. Soc.*, 1974, **96**, 7317; B. Helmer, H. K. Schnoes and H. F. DeLuca, *Arch. Biochem. Biophys.*, 1985, **241**, 608; W. H. Okamura and G.-D. Zhu, *Vitamin D*, eds. D. Feldman, F. H. Glorieux and J. W. Pike, Academic Press, San Diego, 1997, pp. 939–971.
- 11 W. H. Okamura, H. Y. Elnagar, M. Ruther and S. Dobreff, J. Org. Chem., 1993, 58, 600.
- 12 D. C. Hodgkin and P. Sayre, J. Chem. Soc., 1952, 4561; A. J. De Kok and C. Romers, Acta Cryst. B, 1974, 30, 1695.